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Note on shape oscillations of bubbles 
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By use of a virial equation introduced in a recent paper (Benjamin 1987), the main 
results of a second-order perturbation theory developed by Longuet-Higgins (1989 a) 
are recovered in comparatively simple fashion. Asymmetric capillary vibrations of a 
gas bubble in an infinite incompressible liquid are confirmed to generate an increase in 
the volume of the bubble, a lowering of the mean pressure of the gas and a monopole 
component in the motion of the liquid. It is shown that the second effect remains 
when the bubble is incompressible. 

1. Introduction 
In two contemporary papers Longuet-Higgins (1989a, 6 )  investigates second- 

order effects that accompany shape oscillations of a gas-filled bubble in an infinite 
liquid. On the basis of ideal-fluid theory he shows how free oscillations a t  frequency 
CT, in a normal mode (n = 2 , 3 , .  . .) cause fluctuations of the bubble volume at  
frequency 2u,, thus generating a monopole component in the motion of the 
surrounding liquid. Because the latter component decays with radial distance T as 
r-', in contrast with d n + l )  for the asymmetric component, this second-order effect 
is suggested by Longuet-Higgins to be a possibly significant source of underwater 
sound. 

In the present note the central results in his first paper (Longuet-Higgins 1 9 8 9 ~ ;  
henceforth referred to  as LH) will be recovered by an analytical method that is 
simpler in detail than his. The new method has other advantages, and a closely 
related application noted previously (Benjamin 1987, p. 358) will be expanded. No 
commentary will be made here about the possible bearing on underwater sound, 
which prospect is examined in the second of Longuet-Higgins's papers (1989 b) .  

The present derivation depends on an exact virial equation exhibited in a recent 
paper about Hamiltonian theory for motions of a bubble in an infinite liquid 
(Benjamin 1987; henceforth referred to as B). Let Q, denote the evaluation of the 
velocity potential # at  the surface of the bubble (B, p. 351); let Xdenote the position 
vector from a fixed (interior) point to the surface ; and let n denote the unit normal 
directed from the surface into the surrounding liquid. Also take the liquid to have 
unit density. Then the scalar describable as the virial of the motion is defined by 

W = -  Q,(X.n)ds ( 1 )  Is 
(B, equation (2.19)). The equation in question may be written 

-- dW - 5K-22TISI+3(4-pp,)V, 
dt 

where K is the kinetic energy of the motion, T the coefficient of surface tension (U 

in B) and IS1 the area of the bubble surface, 4 the pressure of the gas contents and 
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p ,  the pressure at  infinity in the liquid (P , -p ,  = P in B), and Y the volume of the 
bubble. The proof of (2) is straightforward on lines indicated in B (pp. 357, 358). In 
it the inertia of the gas contents is ignored, the bubble is supposed to be simply 
connected, and the motion of the incompressible inviscid liquid is supposed to be 
generated from rest by conservative forces, so that q5 is for all time t a harmonic 
function of position everywhere in the unbounded domain exterior to S.  There is no 
other assumption. 

A second general property will also be helpful, being even easier to prove from the 
fact that q5 is a harmonic function. Let A,(t) denote the monopole coefficient of the 
far field (i.e. q5 - A ,  r- l+ O ( T - ~ )  as r + CO). We then have the kinematic identity 

d Y  
- dt = l m 9 d s  ar = -4n.4, (3) 

(B, p. 356), whose physical interpretation regarding mass conservation is obvious. 
This identity highlights that a monopole component of the motion can only arise from 
changes in the bubble's volume. It cannot arise in, for example, the otherwise closely 
comparable case of shape oscillations executed by a drop of another liquid immersed 
in and immiscible with the infinite liquid. 

The exact properties (2) and (3) were introduced in B as items in a list of 
conservation laws linked to symmetries of the Hamiltonian system composed by the 
hydrodynamic problem. Several useful applications of the various conservation laws 
and their variational ramifications were explained in B ($84, 5 ) ,  and others will be 
reported in due course. 

2. Basic approximations 

considered in the form 
In terms of spherical coordinates ( r ,  8, @), the equation of the bubble surface S is 

7- = u(l+s,(t)Sn(8,@)+S(t)). (4) 

Here a is the radius of the bubble when a t  rest, le,l 4 1, and S ,  is a spherical 
harmonic of order n. The term I3 independent of position on the surface will turn out 
to be of second order in  IS,^. Further terms, depending on 8 and @, would be needed 
in (4) to represent the motion of the surface accurately to second order; but such 
terms will be seen not to affect the integal-property estimates that follow. Owing to 
the orthogonality and completeness provided by sets of surface harmonics, the 
expression (4) suffices to represent an arbitrary perturbation of the sphere r = a. 
Each term ensn in a summation contributes independently of the others to second- 
order integral properties such as I3 and kinetic energy. 

The spherical mean of 8, is zero for all n 2 1, and its mean square is 

The standard forms of S,  may be recalled. Thus, for axisymmetric perturbations, if 
8, = P,(cosO) with P, the Legendre polynomial of order n, we obtain from ( 5 )  
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I n  the case of tesseral harmonics S, = PF(cos8) cosm$ (1 < m < n )  or sectoral 
harmonics with m = n, the result is 

(cf. Lamb 1932, p. 118; Jeffreys & Jeffreys 1956, pp. 633, 638). 
The velocity potential satisfies A# = 0 everywhere in the liquid. Hence, to first 

order in small quantities, the kinematic boundary condition a t  the bubble surface 
(Lamb 1932, pp. 7, 474) shows that 

From (6), presuming 8 (=  d&/dt) to be O(Je, &I), we easily find that the kinetic 

(7) 

The potential energy of the bubble includes the superficial energy TISI, the part of 
which is due to the variations in shape is TISI’, where IS[’ is the difference IS1 --nu2 
subject to  the constraint Y = 3ra3. From (4) it is easily found that 

energy is given to O(i.i) by 
K = -  2n 5 ‘ 2  n + l a E n  n* 

TISI’ = 2n(n- 1 )  (n + 2) a2Tei (8) 
(cf. Rayleigh 1879, Appendix 2). Note that, according to (4), ISI-4na2 includes a 
contribution 8na2&, which too is O(e2,) and corresponds to a volume change 
9‘-’ = 4na36. These effects will enter the complete second-order estimate to be evalu- 
ated in $3. Note also that ISI’ = 0 for n = 1, which case describes a translation of the 
bubble leaving its surface area unchanged. Only the cases n = 2 , 3 , .  . . representing 
changes in shape are relevant here (see LH, figure 4). 

As a check on (7) and (81, these results may be used to  express the frequency u, 
of infinitesimal shape oscillations, which is of course determinable by linearized 
theory without reference to second-order effects (cf. Lamb 1932, $275). For the 
simple-harmonic motion with 

(9) 

the mean values of K and TISI’ are equal (the principle of energy partition common 
to normal modes of every linearized Hamiltonian system). Hence (7) and (8) give 

8, = l, cos ant, 6, = - u, in sin u,t, 

u2, = (n - 1) (n + 1) (n + 2) T/a3, (101 

which recovers the expression found by Lamb (1932, p. 475, equation (12)). (Recall 
that  the density p of the liquid is taken to be 1 ; otherwise T is replaced by T/p  in 
(lo).) 

3. Virial equation 

a state of rest with K = 0, IS1 = 4na2, V = $xu3, the value of the gas pressure 8 is 
The aim is to evaluate equation (2) to O(62,). The equation shows a t  once that, in 

(11) 

Because 8, = 0, the definition ( 1 )  shows that W and hence dW/dt are 0(62,, 161). 
4, = P, + 2(T/a). 
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Therefore equation (2) confirms that 8, which affects the variables 181, pi and 9‘- on 
the right-hand side, is O(22,). 

Let us suppose that the enclosed gas is compressed and expanded adiabatically, so 
that 

where y is the ratio of specific heats. It follows that, to O(lS1) = 0(2:), 

(C -PA - (EO--pw)  6 = -4na3{(y - 1) pi, +PA 6 
= -4na3{yP,, - 2( T/u)} 6 

by (11). To this order of approximation, we also have 

IS1 = 4na2 + ISI’ + 8na26. 

When these approximations are introduced on the right-hand side of (2), together 
with (7)  for K and (8) for T(S(’ after (9) has been substituted for 6, and E,, the result 
from (2) is 

dW - = 27c(n- 1) (n-2)a2T22,~(5sin2u,t-2 cos2 u,t)-4na3{3yP,,-2(T/a)}6. 
dt (13) 

The final term in (13) can be written -4na5w26, where 

As will be confirmed below, w is in fact the frequency of free infinitesimal oscillations 
in the volume of the bubble (LH, equation (2.2) ; Plesset & Prosperetti 1977, equation 
(2.8)), that is, oscillations in the mode n = 0 featuring a monopole potential. 

To approximate dW/dt accurately to 0(2:, IS[), it is important to appreciate first 
why the expressions (4) for the bubble surface and (6) for q5 are sufficient. Because 
their spherical mean value is zero, like that of S,, additional terms that are O(l2,) 
make no contribution to the integral (1) defining W. For use in the approximation of 
W, we have 

(X. n) ds = u3{ 1 + 36, S, cos u,t + O(62,)) sin 8 d8 d$ ; 

and from (6), with (4) substituted for r,  we have to  O(<:) 

1 
q5 = u, u22, S, sin u,t 

+ (terms O(6:) with zero mean value). 

Hence (1) gives directly 

3 n-2 w = 2xa5 { (-) n + l  u, 2: sin 2unt + 26 , 

and so 

n-2 
dt n + l  
-- dW - 4na5 { (-) u; 2; E C O S  2u,t + 
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Upon the substitution of (15) for the left-hand side of (13) and upon use of the 

(16) 

notation (14), the resulting equation reduces to 

8;+ w26 = CU;{~ - (4n - 1) cos 2unt), 

in which 2; q. 1 C=-  
4(n+ 1) 

Having the complementary function A sin wt + B cosot, with A and B arbitrary, (16) 
confirms w to be the frequency of volume pulsations. The particular integral of (16) 
is 

with 

1 S = D+E C O S ~ U , , ~ ,  

Therefore, according to (6), the monopole component $o of $ associated with shape 
oscillations a t  frequency u, is given by 

vn a2E sin 2u, t 
r , $0 = 

which plainly agrees with (3) and (4). Correspondingly, the pressure fluctuation in the 
liquid a t  large distances r is 

+o($) 
a#o+o - = -  24,  a3E cos 2u,t 

-- at (:4) r 

(cf. LH, equation (7.1)). 
The second-order equations (18) and (19) are equivalent to  the results presented in 

LH as (6.26), with coefficients specified by (6.24), (6.25) and (6.27). The comparative 
straightforwardness of the present derivation exemplifies the usefulness of the virial 
equation (2), which constitutes to all orders of approximation an exact relation 
among the integral properties of symmetric and asymmetric motions. For physical 
interpretations of these results, however, particularly as regards their bearing on 
underwater-sound generation, reference needs to be made to the full discussions in 
Longuet-Higgins's two papers (1989a, b ) .  

4. Mean pressure in gas 
The result (18) shows that the mean value 8= D is positive unless & = 0 or 

u",w2 = 0, the latter of which conditions holds in the limit ap,/T+ 03. Thus, when 
w is finite, the shape oscillations cause the mean volume of the bubble to increase and 
consequently the mean pressure of the contained gas to decrease. The property has 
already been demonstrated in the previous paper B (p. 358), where the artificial case 
p ,  = 0 was taken as an illustrative example. The conclusions can be generalized as 
follows. 

is reduced by shape oscillations even if 
the bubble is incompressible (Y = const.). This case is represented by the limit 
w 2 / u ;  + co, which gives D = E = 0 in (18). But, because to O(22,) the mean value R 
of kinetic energy still equals the mean value of T(S(' ,  the virial equation (2) shows at 
once that 

Note first that the mean pressure 

&p,o = -K/Y < 0 (20) 

(cf. B, equation (2.21), in which R is misprinted as K ) .  
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From (12) and (18), we have to O(6:) 

2 <--Pie - = -3yPioD = 97 grip 6 2 g  

4(n+1)w2 lo 

The result (20) is recovered from (21) in the limits ap,/T+ 00 or y+ 00, either of 
which make the bubble incompressible relative to the shape oscillations. The result 
given in B (equation (2.22)) is recovered when p ,  = 0. 

As a final practical point, it should be acknowledged that the adiabatic law (12) 
becomes unreliable for air bubbles in water that are small enough for their resonance 
frequency w/2n to be a few kHz or more. The pressure-volume relation becomes 
progressively closer to the isothermal law (y  = 1 in (12)) as bubble size decreases (for 
a review of this aspect, see Plesset & Prosperetti 1977, pp. 148, 149). The crucial 
dimensionless parameter in this regard is ( w / K ) ~ ,  where K is the thermal diffusivity 
of the gas. This parameter, which is the quotient of a and the effective diffusion 
length for one period 2n/w, decreases with a (cf. the expression (14) for w ) .  When it 
is 0(1) or less, heat exchange between the gas and liquid is rapid enough for 
approximately isothermal conditions to prevail. The present results (18), (19) and 
(21) remain applicable, of course, if y is replaced by 1 or any other value between 1 
and the specific-heat ratio. 
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